# ITC in Enzyme Characterization



#### $K_{\rm M}$ is analogous to $K_{\rm d}$

$$E + S \stackrel{k_1}{\underset{k_{-1}}{\Leftrightarrow}} ES \stackrel{k_2}{\rightarrow} E + P$$

$$K_{M} = \frac{k_{2} + k_{-1}}{k_{1}}$$
  
When  $k_{-1} >> k_{2}$ 

$$K_M = K_d$$



V<sub>max</sub> is proportional to [enzyme]

 $V_{max} = k_{cat}[E]$ 

#### Km is independent of [E]

Velocity of reaction is given by Michaelis-Menten equation  $v = \frac{[S]}{K_{M} + [S]} k_{cat}[E]$ 



#### **Classical Enzyme Kinetics**





## Two ITC methods

#### Multiple substrate injections

- Low enzyme concentration
- Steady state conditions

#### Continuous assay

- Higher enzyme concentration
- Single injection of substrate



#### **Enzyme Kinetics By ITC**





# [Enzyme] and [Substrate]

Following each injection of substrate there should be no appreciable depletion of substrate (<5%) prior to the next injection.

However substrate concentration cannot be too high otherwise [S] will be above  $K_m$  after the first few injections.

If enzyme-substrate affinity is high then enzyme concentration needs to be low

However this relies upon there being a sufficiently large enthalpy to detect.



#### **PP1-**γ **Phosphatase**



imagination at work



| ITC                                                 | UV                                                   |  |  |
|-----------------------------------------------------|------------------------------------------------------|--|--|
| $K_{\rm m}$ = 1.2(±0.2) mM                          | $K_{\rm m}$ = 0.9(±0.2) mM                           |  |  |
| <i>k</i> <sub>cat</sub> = 0.6 (±0.1) s⁻¹            | <i>k</i> <sub>cat</sub> = 0.5 (±0.1) s <sup>-1</sup> |  |  |
| <i>V</i> <sub>max</sub> = 0.43 μM min <sup>-1</sup> | <i>V</i> <sub>max</sub> = 0.39 μM min <sup>-1</sup>  |  |  |















#### [P<sup>1</sup>,P<sup>4</sup>-diadenosine-5')tetraphosphate] mM





[P<sup>1</sup>, P<sup>5</sup>-diadenosine-5')pentaphosphate] mM



imagination at work

| Hydrolysis of diadenosine polyphosphates by Ap <sub>4</sub> A<br>Hydrolase |                                                                      |                                                                  |     |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-----|--|--|
|                                                                            | P <sup>1</sup> ,P <sup>4</sup> -di(adenosine-5') P<br>tetraphosphate | <sup>1</sup> ,P <sup>5</sup> -di(adenosine-5')<br>pentaphosphate | ATP |  |  |
| <i>K</i> <sub>m</sub> (μΜ)<br><i>nd</i>                                    | 2.68±0.80                                                            | 34.5±1.8                                                         |     |  |  |
| k <sub>cat</sub> (s <sup>-1</sup> )<br>nd                                  | 2.76±0.03                                                            | 0.05±0.01                                                        |     |  |  |
| V <sub>max</sub> (nM s⁻¹)<br>nd                                            | 5.52                                                                 | 1.0                                                              |     |  |  |
| ∆ <i>H</i> <sub>app</sub> (kcal mol⁻¹)                                     | -19.24±0.27                                                          | -16.38±0.74                                                      |     |  |  |

imagination at work



Biophysica Acta 1545 (2001) 349-356





#### **Continuous Injection Method**

Trypsin catalysed hydrolysis of BAEE and inhibition by benzamidine



#### **Continuous Injection Method**

From this raw data the **rate** at any time can be obtained using:

$$Rate = \frac{d[P]}{dt} = \frac{1}{V.\Delta H_{app}} \frac{dQ}{dt}$$

The amount of substrate left at any given time after the initial injection can be determined from the integral of the heat evolved:

$$S_{t} = S_{Total} - P_{(t)} = S_{Total} - \frac{\int_{t=0}^{t} Q_{(t)}}{\Delta H.V}$$



#### **Continuous Injection Method**





- Universal assay
- No need to couple assay to colour change reaction
- No labelling required
- Modifications to substrate and/or enzyme do not effect assay
- Turbid solutions can be used
- Pico-femtomoles of protein required
- Quick



# Comparison of calorimetric and other assay data

| Enzyme                                              | Calorimo    | Calorimetric          |          | Literature Values          |  |
|-----------------------------------------------------|-------------|-----------------------|----------|----------------------------|--|
|                                                     | K           | Vmax                  | Km       | Vmax                       |  |
| E.C. 1.5.1.3 (DHFR) *                               |             | max                   |          | щах                        |  |
| Substrate = DHF                                     | 1.2 µM      | 6 s <sup>-1</sup>     | 6 µM     | 3 s <sup>-1</sup>          |  |
| E.C. 2.7.1.1 (yeast hexokinase) <sup>b</sup>        | ,           |                       | ,        |                            |  |
| Substrate = glucose                                 | 72 µM       | 270 s <sup>-1</sup>   | 100 µM   | 450 s <sup>-1</sup>        |  |
| E.C.3.3.2.6 B. cereus Penicillinase Iº              | 120 µM      | 3600 s <sup>-1</sup>  | 50 µM    | 2800 s <sup>-1</sup> [iii] |  |
| E.C. 3.4.21.4 (Trypsin) <sup>d</sup>                | 4 µ M       | 15 s <sup>-1</sup>    | 5 µM     | 22 s <sup>-1</sup> [iv]    |  |
| E.C. 3.4.21.16 (HIV protease) <sup>e</sup>          | ,           |                       |          |                            |  |
| Substrate = KARVnLF(NO2)EAnL                        | 5 - 300 µM  | 10 s <sup>-1</sup>    | 15 µM    | 45 s <sup>-1 33</sup>      |  |
| Substrate = VSQNYPIVQ                               | [NaCl] depe | [NaCl] dependent      |          |                            |  |
| E.C. 3.5.1.5 (H. pylori urease)f                    | 0,79 mM     | 1400 s <sup>-1</sup>  | 0.17 mM  | 2700 s <sup>-1</sup>       |  |
| E.C. 4.1.1.7 (F. heparinum heparinase) <sup>g</sup> | 1.8 µM      | 0.059 s <sup>-1</sup> | 10,2 µM  | 92 s <sup>*1</sup> [vi]    |  |
| E.C. 4.1.1.39 (Rubisco) <sup>h</sup>                |             |                       |          |                            |  |
| Substrate = ribulose bis phosphate                  | 0,15 mM     | 1.95 s <sup>-1</sup>  | 0.053 mM | 1.76 s <sup>-1</sup> [vii  |  |
| E.C. 4.1.3.18 (Acetolactate synthase) <sup>i</sup>  | 4.8 mM      | $11 \text{ s}^{-1}$   | 5.5 mM   | 5.3 s <sup>-1</sup> [viii] |  |
| E.C. 5.99 (GroEL)                                   | 3 µM        |                       | 5 µM     |                            |  |
|                                                     | n == 2.9    | 0.052 s <sup>-1</sup> | n = 2.5  | 0.08 s <sup>-1 22</sup>    |  |
| E.C. 6.4.1.1 (Pyruvate carboxylase)k                |             |                       |          |                            |  |
| Substrate = ATP                                     | 85 µM       |                       | 58 µM    |                            |  |
| Substrate = pyruvate                                | 105 µM      |                       | 440 µM   | <u>fix1</u>                |  |
| e in antina attende                                 |             |                       |          |                            |  |



imagination at work

Todd and Gomez, Anal. Biochem. 276, 179-187 (2001)